ウイルス酵素の高性能蛍光イメージングプローブの構造基 盤の確立

静岡県立大学大学院 薬学研究院 生化学講座 高橋忠伸

1. はじめに

ヒト流行性ウイルスの A 型インフルエンザウイルス (IAV)、B 型インフルエンザウイルス (IBV)、ムンプスウイルス(MV、流行性耳下腺炎「おたふくかぜ」の原因)、ヒトパラインフ ルエンザウイルス(hPIV、5歳未満のウイルス性肺炎の2割の原因)は、糖鎖末端に存在する シアル酸(Neu5Ac、N-アセチルノイラミン酸)を切断する酵素「シアリダーゼ」を持ってい る。我々は、これらのウイルスや感染細胞に発現するシアリダーゼ活性を蛍光イメージングす るプローブ 『BTP3-Neu5Ac』(図 1)^{1,2)}、およびその構造をベースとして局所イメージング精 度を向上させた『BTP9-Neu5Ac』(図 2)³⁾(特許登録第 6493964 号)を開発した。これらの非 蛍光性プローブには、シアリダーゼの酵素活性部位が認識する構造 Neu5Ac が含まれる。シア リダーゼ活性によって Neu5Ac が切断されることで、疎水性蛍光物質 BTP3(励起波長/蛍光波 長 = 372/526 nm)^{4,5)}および BTP9(励起波長/蛍光波長 = 372/529 nm)を生じる。BTP3 および BTP9 は、生細胞の状態でウイルス感染細胞に発現するシアリダーゼ活性の存在部位に沈着し て、感染細胞を組織化学的に蛍光化(イメージング)する(図3)。さらに、抗インフルエンザ 薬(シアリダーゼ阻害薬)と BTP3-Neu5Ac の併用により、シアリダーゼ阻害薬に耐性化した インフルエンザウイルスやその感染細胞を選択的にライブイメージングし、市販のインフルエ ンザ診断薬以上の高感度で検出が可能で、ほぼ 100%の高確率で薬剤耐性ウイルス株を選択的 に単離する方法を確立した^{6,7)}。

多くの公的衛生検査機関でウイルスの分離培養が実施されているヒト流行性の IAV、IBV、 MV、hPIV について、医療・衛生検査、学術研究をマーケットに見据えて、高性能化を志向し た新規蛍光イメージングプローブやその画期的な応用技術の開発を目標としている。本研究 は、BTP3-Neu5Ac を基本構造骨格としてプローブ自体の構造改良を実施して、高性能化した 新規シアリダーゼ蛍光イメージングプローブを開発する。また、BTP9-Neu5Ac の応用技術を 確立する。本成果は、BTP3-Neu5Ac の高性能化における構造改良基盤、シアリダーゼを有する ヒト流行性ウイルスおよびその感染細胞の簡易同定スクリーニング試薬の開発、ウイルス感染 細胞内におけるシアリダーゼ活性の機能研究の「ブレークスルー」技術を提供する。

2. ウイルス感染細胞内のゴルジ装置に新生シアリダーゼが局在する条件の検討

IAVの表面糖タンパク質で あるシアリダーゼは、感染細 胞内で合成されて細胞膜表面 上に発現する。シアリダーゼ は細胞膜表面に移行する前 に、糖鎖修飾を受けるため一 時的に細胞内ゴルジ装置に局 在する。細胞内シアリダーゼ 活性の挙動はほとんど分かっ ていない。BTP9-Neu5Acの応 用法の開発をめざし、この状 態の細胞内シアリダーゼ活性 の蛍光イメージングに挑戦し た。

新生ウイルスシアリダーゼ がゴルジ装置に局在する条件 を検討するため、ヒト肺がん 由来 A549 細胞に IAV

(A/Memphis/1/1971 H3N2 亜 型株)を4℃、30分間感染さ

せ、37℃で感染 5.5、7.5、9.5 時間後まで培養した。細胞をメタノールで固定化し、ウイルス シアリダーゼおよびゴルジ装置を、それぞれ抗 N2 型シアリダーゼモノクローナル抗体およ び抗ゴルジ装置マーカーTGN46 抗体で免疫染色した。ウイルス感染 7.5 時間後の感染細胞 で、ゴルジ装置にウイルスシアリダーゼの局在が確認された(図4)。ゴルジ装置に局在した シアリダーゼが感染細胞内で新たに合成されたシアリダーゼであるかを確認するため、タン パク質合成阻害剤シクロヘキシミド存在下で感染細胞を培養し、感染 7 時間後の細胞のゴル ジ装置とシアリダーゼを免疫染色した。シクロヘキシミド添加により、ゴルジ装置にシアリ ダーゼの局在が見れなくなったことから、感染 7 時間後に新生シアリダーゼがゴルジ装置に 局在していることが確認された。なお、シクロヘキシミド添加時、ゴルジ装置とは別の場所 の細胞内でシアリダーゼの弱い免疫染色像が観察されたが、これは感染時に細胞内へ侵入し たウイルスのシアリダーゼに由来したものかもしれない。これらの結果より、新生シアリダ ーゼが細胞膜表面上に移行する前の、感染細胞内のゴルジ装置に局在する条件として、「感染 7時間後」を採用した。以降の実験は、感染7時間後の細胞を観察した。

3. ウイルス感染細胞内のゴルジ装置に局在したシアリダーゼ活性の蛍光イメージング

ウイルス感染細胞内のゴルジ 装置に局在したウイルスシアリ ダーゼの酵素活性を蛍光イメー ジングする方法を確立すること にした。具体的には、IAV 感染 7 時間後の A549 細胞内のゴルジ装 置に局在した新生ウイルスシア リダーゼの酵素活性を、BTP3-Neu5Ac の局所イメージング性能 を向上させた BTP9-Neu5Ac³⁾(特 許登録第 6493964 号)を使用して 蛍光イメージングした。感染7時 間後の細胞を 4%パラホルムアル デヒドで固定化し、細胞内シアリ ダーゼ活性の蛍光イメージング において界面活性剤 0.1% Triton X-100 による膜透過処理の必要性 を検討した。細胞に 20 µM BTP9-Neu5Ac を氷上、30 分間浸透させ、 シアリダーゼ反応を 37℃、15 分間 行った。シアリダーゼ活性の蛍光 イメージング像を観察後、BTP9の 蛍光をメタノール処理により除

去し、抗 N2 型シアリダーゼモノクローナル抗体および抗ゴルジ装置マーカーTGN46 抗体 で免疫染色して、同領域を蛍光観察した。膜透過処理によって、ゴルジ装置に局在したシ アリダーゼの酵素活性の蛍光イメージング像が明確に確認された。一方、膜透過処理をし ない場合、シアリダーゼ活性の蛍光イメージング像は観察されなかった。Triton X-100 に よる膜透過処理は、BTP9-Neu5Acを使用して細胞内シアリダーゼ活性を明確に蛍光イメー ジングするために必要な操作であった (図 5A)。細胞内の蛍光イメージング像を詳細に観 察するために、100 倍油浸対物レンズを使用して蛍光像を観察した (図 5B)。なお、通常 の蛍光像の観察は 20 倍対物レンズを使用した。ゴルジ装置に局在したウイルスシアリダ ーゼの免疫染色像と、BTP9-Neu5Acによるシアリダーゼ活性の蛍光イメージング像が一致 していた。非感染細胞ではシアリダーゼ活性の蛍光イメージングは観察されなかった。本 実験条件下では、哺乳動物細胞由来の細胞内在性シアリダーゼ活性は検出されなかった。 我々が開発した BTP9-Neu5Ac を使用して、感染細胞内のウイルスシアリダーゼ活性を蛍 光イメージングする方法を確立した。

4. 抗インフルエンザ薬ラニナミビル オクタン酸エステルの細胞内シアリダーゼ阻害作用 の可視化

抗インフルエンザ薬で IAV や IBV のシアリダーゼ活性を特異的に阻害するシアリダーゼ阻 害薬は、ザナミビル、オセルタミビル、ペラミビル、ラニナミビル オクタン酸エステルの 4 つが日本において承認されている。ザナミビルとラニナミビル オクタン酸エステルは吸入剤 である。ザナミビルは1日2回、5日間投与されるが、ラニナミビル オクタン酸エステルは 1回のみの投与で抗ウイルス効果が1週間程度持続する。ザナミビルは細胞内に移行しないこ とが報告されている。一方、ラニナミビル オクタン酸エステルは細胞内に移行後、細胞内の エステラーゼ (A549 細胞に発現が報告されている ESD や APT1 など)によってオクタン酸が 切断されて、シアリダーゼ阻害作用を示す活性体のラニナミビルに変換される。ラニナミビル

は細胞内に貯留するこ とで、シアリダーゼ阻 害作用を長期間持続す るものと考えられてい る。この作用機構は薬 物動態の結果に基づい たものであるが、細胞 内のシアリダーゼ活性 が実際に阻害されてい るのか明確に示されて いない。そこで、本研 究で確立した細胞内ウ イルスシアリダーゼ活 性の蛍光イメージング 法を利用して、ラニナ ミビル オクタン酸エ ステルの細胞内シアリ ダーゼ阻害作用の可視 化に挑戦した。

A549 細胞を 50 μM のザナミビル、ラニナ ミビル、またはラニナ ミビル オクタン酸エ ステルの存在下で一晩 培養した。これらの細 胞をはがしてガラスス ライドに播種し、200 μMのザナミビル、ラニ ナミビル、またはラニ

図 6.ラニナミビル オクタン酸エステルの細胞内ウイルスシアリダ ーゼ活性阻害作用の可視化

A、各シアリダーゼ阻害薬の存在下、A549 細胞を培養した。細胞を洗浄後、IAV を感染させた。細胞を洗浄後、Aシアリダーゼ阻 害薬存在下で 6.5 時間培養した。細胞をパラホルムアルデヒドで固 定化し、Triton X-100 で膜透過処理した。BTP9-Neu5A を使用し て、シアリダーゼ活性を蛍光イメージングした(緑)。蛍光画像を 観察後、メタノールで BTP9 を除去して、抗シアリダーゼ抗体 (赤)、抗ゴルジ装置マーカーTGN46 抗体(紫)、DAPI(青、核染 色)により蛍光染色した。黄色枠内の細胞を拡大表示した。スケー ルバーは、通常の画像で 100 μm、黄色枠内で 20 μm。B、シアリダ ーゼ発現細胞(赤)に対するシアリダーゼ活性(緑)との共局在細 胞(黄)の相対比(%)を計測した。グラフは 3 回の独立した実験 の個々のデータ(o)と平均値を示し、誤差は標準誤差を表示し た。有意差検定はピアソンのカイ 2 乗検定で行った。***、p< 0.001 vs ラニナミビル オクタン酸エステル。

ナミビル オクタン酸エステルの存在下で一晩培養した。PBS で細胞を洗浄してシアリダーゼ 阻害薬の非存在下で、IAVを氷上、30分間添加して細胞表面に吸着させ、さらに 37℃、30分 間感染させた。細胞を洗浄してウイルスを除去した後、200μMのザナミビル、ラニナミビル、 またはラニナミビル オクタン酸エステルの存在下で 37℃、6.5 時間培養した。細胞を洗浄し てシアリダーゼ阻害薬の非存在下で、細胞を4%パラホルムアルデヒドで固定化し、0.1% Triton X-100 で膜透過処理した。細胞に 20 μM BTP9-Neu5Ac を氷上、30 分間浸透させ、シアリダー ゼ反応を 37℃、15 分間行った。ラニナミビルやザナミビルは IAV のシアリダーゼ活性部位に 結合すると、6時間も結合が持続することが知られている。この蛍光イメージング操作は、ザ ナミビルやラニナミビルがシアリダーゼ活性部位に結合し続けて、シアリダーゼ活性を阻害し 続けることに十分な時間である。シアリダーゼ活性の蛍光イメージング像を観察後、BTP9の 蛍光をメタノール処理により除去し、抗 N2 型シアリダーゼモノクローナル抗体および抗ゴル ジ装置マーカーTGN46 抗体で免疫染色して、同領域を蛍光観察した。実験操作の過程で、シ アリダーゼ阻害薬をウイルスに直接作用させていない。ザナミビルは細胞膜を透過しないこと から細胞内へ移行しないことが報告されている。ザナミビル存在下、感染細胞内のゴルジ装置 に局在したウイルスシアリダーゼ活性は蛍光イメージングされた。ラニナミビルは膜透過性や 細胞内移行に関する報告は無いが、ザナミビルと化学構造が極めて類似していることから細胞 内へ移行しないものと予想される。ラニナミビル存在下、感染細胞内のウイルスシアリダーゼ 活性は蛍光イメージングされた。一方、ラニナミビル オクタン酸エステル存在下、感染細胞 内のウイルスシアリダーゼ活性は蛍光イメージングされず、細胞内ウイルスシアリダーゼに対 する阻害作用が示された(図6)。本研究で確立した方法により、ラニナミビル オクタン酸エ ステルの細胞内ウイルスシアリダーゼ阻害作用が初めて可視化された。また、ゴルジ装置に局 在したウイルスシアリダーゼ活性が阻害されていることから、ラニナミビル オクタン酸エス テルは細胞内でラニナミビルに変換後、ゴルジ装置に到達していることが強く示唆された ⁸⁾。

5. 各ウイルス種を特異的に検出する蛍光イメージング剤の開発

BTP3-Neu5Ac および BTP9-Neu5Ac は、ウイルス、菌、動物細胞に由来するすべてのシア リダーゼを蛍光化する。そのため、特定のウイルス種のみを検出して同定することはできな い。そこで、ウイルス種やその感染細胞を容易に検出・同定するための蛍光イメージングプ ローブの開発をめざす。具体的には、BTP3-Neu5Ac の化学構造を改良した誘導体から、公的 衛生検査機関にて疫学調査の対象でヒト流行性ウイルスである IAV や MV を特異的に検出可 能な蛍光プローブを探索する。本研究では BTP3-Neu5Ac 誘導体を使用して、各ウイルス種の シアリダーゼ反応性を比較することで、各ウイルス種に対する特異性を評価した。

BTP3-Neu5Ac およびその誘導体を使用して、IAV (A/Hong Kong/1/1968 H3N2 亜型株)、 MV (静岡市分離 13V165E2 株)、hPIV 血清 1 型 (hPIV1、C35 株)、hPIV 血清 3 型 (hPIV3、 C243 株)、または鳥類病原ウイルスのニューカッスル病ウイルス (NDV、D26 株) のシアリ ダーゼ遺伝子を導入して 48 時間培養したヒト胎児腎由来 293T 細胞を 100 mM 酢酸緩衝液

(pH 4.5)、37℃、20分間反応させて、シアリダーゼ活性(最大励起波長下の最大蛍光波長の 蛍光強度)を測定した。検討したウイルス種の中で IAV のシアリダーゼのみに反応するプロ ーブ A を探索できた。プローブ A は IAV を感染させたイヌ腎由来 MDCK 細胞のみを蛍光イ メージングした(図 7)。この実験では、MV はアフリカミドリザル腎由来 Vero 細胞、hPIV

と NDV はアカゲザル腎由来 LLC-MK2 細胞に感染させた。さらにプローブ A は、他の IAV 株 (A/PR/8/1934 H1N1 亜型株、A/Shizuoka/830/2009 H1N1 亜型株)を感染させた MDCK 細胞 も蛍光イメージングできた。プローブ A と BTP3-Neu5Ac は細胞毒性や抗ウイルス作用を示 さないため、感染細胞をライブイメージングして、そのままウイルス培養が可能である。 IAV (A/Hong Kong/1/1968 H3N2 亜型株)と hPIV1 (C35 株)の異なる 2 種のウイルスを混在 させたサンプルを感染させた LLC-MK2 細胞を寒天培地で固めて、96 時間培養した。寒天培 地の上に 1 mM BTP3-Neu5A または 2 mM プローブ A を 200 µl 滴下してシアリダーゼ反応を 37℃、7 時間行った。IAV 感染細胞集団 (フォーカスと呼ぶ)のみをライブイメージング し、その蛍光化フォーカスを取得して新しい細胞で感染培養することで、異なるウイルス種 が混在したサンプルから IAV 株のみを選択的に単離できた (図 8)。さらに、検討したウイル ス種の中で MV のシアリダーゼのみに反応するプローブ B を探索できた。プローブ B は、 MV 感染細胞のみを蛍光イメージグした (図 9)。プローブ A およびプローブ B は共に、既存 プローブ BTP3-Neu5Ac と比較してシアリダーゼ反応性は低かった。一方で、hPIV1 のシアリ ダーゼに対して BTP3-Neu5Ac よりも高い反応性を示し、hPIV3 には低い反応性を示すプロー ブ C を探索できた。hPIV の血清型は 1~4 まで存在する。プローブ C は hPIV1 の血清型判定 やその単離に利用できるかもしれない。プローブの化学構造の記載は、特許出願公開前(特 願 2023-74720)のため控えさせていただいた。本研究で、IAV および MV の各シアリダーゼ に選択的に反応するプローブ A およびプローブ B を新規に開発した。また、hPIV1 のシアリ ダーゼに反応性の高いプローブ C を新規に開発した。これらのプローブはウイルス種の診 断・同定法の検出原理として利用できる。衛生検査機関ではこれらのプローブを、感染細胞 レベルでウイルス種の同定や培養の確認、さらにウイルスの分離および単離に利用すること ができる。

細胞を蛍光イメ-ジングした。IAV と MV のシアリダーゼ反応は pH 7.4、37℃、30 分間行った。hPIV のシアリダーゼ反応は pH 4.5、37℃、30 分間行った。スケールバーは 200 µm。

6. まとめ

過去に開発したシアリダーゼ蛍光イメージング剤 BTP9-NeuSAc を使用して、IAV 感染細胞 内のウイルスシアリダーゼ活性を蛍光イメージングする方法を確立した。糖鎖修飾を受ける ためゴルジ装置に局在しているウイルスシアリダーゼの酵素活性を初めて可視化した。さら にこの方法を利用して、抗インフルエンザ薬のラニナミビル オクタン酸エステルの細胞内ウ イルスシアリダーゼ阻害作用を初めて可視化できた。本法は、細胞内ウイルスシアリダーゼ 活性の解析や細胞内シアリダーゼの酵素活性を標的とするシアリダーゼ阻害剤の開発に利用 できるものと期待される。BTP3-NeuSAc 誘導体から、IAV や MV の各シアリダーゼに選択的 に反応するプローブを探索した。また、hPIV1 のシアリダーゼに反応性の高いプローブも開 発した。これらのプローブは、各ウイルス種や hPIV の血清型の簡易診断法あるいは簡易同 定法の原理として利用できる。衛生検査機関では、これらのプローブを利用することで、感 染細胞レベルでウイルス種の同定や培養の確認が容易に行える。臨床サンプルにウイルスが 混在している状態であっても、IAV 株や MV 株を容易に単離することができる。今後、過去 に開発したシアリダーゼ蛍光イメージング剤 BTP3-NeuSAc を基本構造として、各応用分野に 適した性能を向上させるための構造改良の基盤を確立し、新規シアリダーゼ蛍光イメージン グ剤の応用法を確立していく。

謝辞

BTP3-Neu5Ac 誘導体と BTP9-Neu5Ac を合成していただいた共同研究者の広島国際大学薬学部 池田 潔教授、大坪忠宗准教授に厚く感謝申し上げます。本研究の遂行にあたり、研究助成 によるご支援を賜りました公益財団法人天野工業技術研究所に感謝申し上げます。

参考文献

- Kurebayashi, Y.,¹ Takahashi, T.,¹ (¹ they contributed equally as first authors), Otsubo, T., Ikeda, K., Takahashi, S., Takano, M., Agarikuchi, T., Sato, T., Matsuda, Y., Minami, A., Kanazawa, H., Uchida, Y., Saito, T., Kawaoka, Y., Yamada, T., Kawamori, F., Thomson, R., von Itzstein, M., Suzuki, T. Imaging of influenza virus sialidase activity in living cells. *Sci. Rep.* 4, 4877 (2014)
- Takahashi, T., Agarikuchi, T., Kurebayashi, Y., Shibahara, N., Suzuki, C., Kishikawa, A., Fukushima, K., Takano, M., Suzuki, F., Wada, H., Otsubo, T., Ikeda, K., Minami, A., Suzuki, T. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells. *PLoS ONE* 10, e0144038 (2015)
- 3) Kurebayashi, Y.,¹ Takahashi, T.,¹ (¹ they contributed equally as first authors), Miura, T., Otsubo, T., Minami, A., Fujita, Y., Sakakibara, K., Tanabe, M. Iuchi, A., Ota, R., Ikeda, K., Suzuki, T. Fluorogenic probes for accurate in situ imaging of viral and mammalian sialidases. ACS Chem. Biol. 14, 1195-1204 (2019)
- 4) Otsubo, T., Minami, A., Fujii, H., Taguchi, R., Takahashi, T., Suzuki, T., Teraoka, F., Ikeda, K. 2-(Benzothiazol-2-yl)-phenyl-β-D-galactopyranoside derivatives as fluorescent pigment dyeing substrates and their application for the assay of β-D-galactosidase activities. *Bioorg. Med. Chem. Lett.* 23, 2245-2249 (2013)
- 5) Takahashi, T., Otsubo, T., Ikeda, K., Minami, A., Suzuki, T. Histochemical imaging of alkaline phosphatase using a novel fluorescent substrate. *Biol. Pharm. Bull.* 37, 1668-1673 (2014)
- 6) Kurebayashi, Y.,¹ Takahashi, T.,¹ (¹ they contributed equally as first authors), Tamoto, C., Sahara, K., Otsubo, T., Yokozawa, T., Shibahara, N., Wada, H., Minami, A., Ikeda, K., Suzuki, T. High-Efficiency Capture of Drug Resistant-Influenza Virus by Live Imaging of Sialidase Activity. *PLoS ONE* 11, e0156400 (2016)
- 7) Kato, D.,¹ Kurebayashi, Y.,¹ Takahashi, T.,¹ (¹ they contributed equally as first authors), Otsubo, T., Otak, e H., Yamazaki, M., Tamoto, C., Minami, A., Ikeda, K., Suzuki, T. An easy, rapid, and sensitive method for detection of drug-resistant influenza virus by using a sialidase fluorescent imaging probe, BTP3-Neu5Ac. *PLoS ONE* 13, e0200761 (2018)
- Amano, K.,¹ Kurebayashi, Y.,¹ Takahashi, T.,¹ (¹ they contributed equally as first authors), Narimichi,
 Y., Otsubo, T., Ikeda, K., Minami, A., Takeuchi, H. Visualizing intracellular sialidase activity of influenza A virus neuraminidase using a fluorescence imaging probe. J. Virol. Methods 323, 114838 (2024)